Electronic structure of oxide, peroxide, and superoxide clusters of the 3d elements: a comparative density functional study.
نویسندگان
چکیده
The 3d-element transition metal dioxide MO(2), peroxide M(O(2)), and superoxide MOO clusters (M=Sc-Zn), are studied by density functional theory with the B1LYP functional. The reliability of the methods and basis sets employed was tested by a reinvestigation of the monoxides, for which a database of experimental data is available. The global minima on the M+O(2) potential energy surfaces correspond to dioxide structure, the only exception being CuOO, with a superoxide structure. All Zn dioxygen clusters are thermodynamically unstable-their ground states lie higher than the dissociation limit to Zn+O(2). Our calculations are in favor of the high-spin configurations for the FeO(2), CoO(2), and NiO(2) ground states, which are still a subject of extensive theoretical and experimental studies. These assignments are confirmed by the coupled-cluster method, CCSD(T), except for NiO(2). Based on the existence of a stable NiO(2) monoanion in a (4)B(1) state, however, it can be concluded that NiO(2) in its (5)A(1) state should also be stable. The vibrational frequencies are calculated for clusters entrapped in the cubic cell of solid Ar matrix and compared with those obtained for gas-phase clusters. The matrix has no influence on the vibrations of the monoxides and most of the dioxides; however, Co and Ni-dioxoclusters interact strongly with the atoms from the noble gas matrix. The most intense frequencies in the IR spectra are shifted to lower energies and the ordering of the low-lying electronic states by stability is also reversed. According to the electrostatic potential maps, the oxygen atoms in the peroxides are more nucleophilic than those in the dioxides and superoxides. The terminal oxygen atom in superoxides is more nucleophilic than its M-bonded oxygen atom, though charge distribution analysis predicts a smaller negative charge on the terminal oxygen. TiO(2) is the only dioxide in which nucleophilic character in the vicinity of the metal cation is induced.
منابع مشابه
The Effect of Substitution of a Zn Atom in Cdn-1TenClusters (n=1-10)
In this research, structural and electronic properties of ZnCdn-1Ten clusters (n=1-10) have been studied by formalism of density functional theory and using the projector augmented wave within local density approximation. The structural properties (such as bond length/angle and coordination number), electronic and optical properties (such as binding energy, Kohn-Sham spect...
متن کاملGeometric and Electronic Structures of Vanadium Sub-nano Clusters, Vn (n = 2-5), and their Adsorption Complexes with CO and O2 Ligands: A DFT-NBO Study
In this study, electronic structures of ground state of pure vanadium sub-nano clusters, Vn (n=2-5), and their interactions with small ligands for example CO and triplet O2 molecules are investigated by using density functional theory (DFT) calibration at the mPWPW91/QZVP level of theory. The favorable orientations of these ligands in interaction with pure vanadium sub-nano clusters were determ...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملInvestigation of structural and electronic properties of small Au n Cu m (n+m≤5) nano-clusters for Oxygen adsorption
In this study, the structures, the IR spectroscopy, and the electronic properties of AunCum (n+m≤5) bimetallic clusters were studied and compared with those of pure gold and copper clusters using the generalized gradient approximation (GGA) and exchange correlation density functional theory (DFT). The study of an O2-AunCum system is important to identify the promotion effects of each of the two...
متن کاملTiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study
We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 128 9 شماره
صفحات -
تاریخ انتشار 2008